High fidelity quantum state transfer in electromechanical systems with intermediate coupling
نویسندگان
چکیده
Hybrid quantum systems usually consist of two or more subsystems, which may take the advantages of the different systems. Recently, the hybrid system consisting of circuit electromechanical subsystems have attracted great attention due to its advanced fabrication and scalable integrated photonic circuit techniques. Here, we propose a scheme for high fidelity quantum state transfer between a superconducting qubit and a nitrogen-vacancy center in diamond, which are coupled to a superconducting transmission-line resonator with coupling strength g1 and a nanomechanical resonator with coupling strength g2, respectively. Meanwhile, the two resonators are parametrically coupled with coupling strength J. The system dynamics, including the decoherence effects, is numerical investigated. It is found that both the small (J<<{g1,g2}) and large (J>>{g1,g2}) coupling regimes of this hybrid system can not support high fidelity quantum state transfer before significant technique advances. However, in the intermediate coupling regime (J ~ g1 ~ g2), in contrast to a conventional wisdom, high fidelity quantum information transfer can be implemented, providing a promising route towards high fidelity quantum state transfer in similar coupled resonators systems.
منابع مشابه
Teleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کاملQuantum state transfer in arrays of flux qubits
In this work, we describe a possible experimental realization of Bose’s idea to use spin chains for short distance quantum communication [S. Bose, Phys. Rev. Lett. 91 207901]. Josephson arrays have been proposed and analyzed as transmission channels for systems of superconducting charge qubits. Here, we consider a chain of persistent current qubits, that is appropriate for state transfer with h...
متن کاملSimple variational ground state and pure cat state generation in the quantum Rabi model
We introduce a simple, physically-motivated variational ground state for the quantum Rabi model, and demonstrate that it provides a high-fidelity approximation of the true ground state in all parameter regimes (including intermediate and strong coupling regimes). Our variational state is constructed using Gaussian cavity states and nonorthogonal qubit pointer states, and contains only three var...
متن کاملSolid-State Quantum Communication With Josephson Arrays
Josephson junction arrays can be used as quantum channels to transfer quantum information between distant sites. In this work we discuss simple protocols to realize state transfer with high fidelity. The channels do not require complicate gating but use the natural dynamics of a properly designed array. We investigate the influence of static disorder both in the Josephson energies and in the co...
متن کاملExploiting boundary states of imperfect spin chains for high-fidelity state transfer
We study transfer of a quantum state through XX spin chains with static imperfections. We combine the two standard approaches for state transfer based on (i) modulated couplings between neighboring spins throughout the spin chain and (ii) weak coupling of the outermost spins to an unmodulated spin chain. The combined approach allows us to design spin chains with modulated couplings and localize...
متن کامل